Browse Client Types

Browse past lab clients by general industry sectors

Trial Number 6

Trial Purpose:

To determine the coefficient of friction for various floor finishes.

Date Run:

06/29/2006

Experiment Procedure:

Control of Moisture Content and Temperature
The moisture content at the time of testing will influence results due to the hydroscopic nature of the base materials. Therefore, efforts must be taken to ensure that the moisture content and temperature remain constant during the evaluation period. Ideally, the sample floor should be kept at 65+/-1% relative humidity and 68+/-6 F. During laboratory testing, conditions were 64% relative humidity and the temperature was ~74 F.

Sample Preparation
The flooring material supplied was Hardwood flooring made from Red Oak. The boards were ¾” thick, 2 ¼” wide and cut into 8” sections.

Three coupons were coated with a supplied floor finish according to the manufacturers’ specifications. The finish was applied using a 1” Pure Bristle 1500 paint brush. To ensure proper coating application rates, the coatings were applied via pipettes to surface. Three coats were used for each floor finish as this was common number of coating layers suggested by the various manufacturers.

The first two coatings were allowed to dry for 2 hours prior to the application of the next coat. The second coat for the current process was allowed to dry overnight before the application of final coat. The Completed coupons were allowed to sit for a minimum period of 24 hours before performance evaluations were conducted.

Coefficient of Friction
The ASTM specified apparatus was replaced with an IMASS, Inc SP-102B-3M90 Slip/Peel Tester (Figure 1). Two types of friction coefficients were measured using this instrument. The first, Static CoF, was determined by obtaining the force required to move the specimen from a stationary position. The second, Sliding CoF (or Kinetic), was found by measuring the average force required to maintain movement at a certain rate. Measured forces will have peaks and valleys in the amount of force needed to keep moving. Average these values results and dividing by the weight of the object will result in the desired coefficient.
Figure 1. IMASS Slip/Peel Tester

The Slip/Peel tester was first adjusted to ensure that the device was properly calibrated for the sled weight being used. A coupon was then placed and clamped onto the bed of the device. The speed of the bed was set to 45”/min. The instrument records two values, the peak, the valley and calculates the average. The device was run three times per coupon for measuring the Static CoF and three times to measure the Kinetic CoF. Each coupon’s value was averaged and then the values for each finish (three coupon averages) were averaged to get one value for the Static Coefficient of Friction and one value for the Kinetic Coefficient of Friction. These values for coated samples were compared to the CoF for the same uncoated coupons.

Coefficient of Friction = Ratio of tractive (pulling) force to the normal force (sled weight): CoF = F/N = (Tractive force)/(Normal Force) = (meter reading)/(sled weight)

Trial Results:

Uncoated CoF Readings

Initial CoF  Static   Kinetic 
Product Coupon # Peak Valley Average Peak Valley Average
CP 1 590 482 503 550 492 511
    659 493 513 511 484 497
    606 487 504 524 491 501
  2 578 468 483 496 415 441
    694 463 477 535 483 497
    692 461 476 518 468 481
  3 691 483 497 523 480 493
    689 480 491 507 479 492
    647 482 494 521 474 486
MCP 4 638 486 498 509 439 465
    671 474 489 489 421 434
    641 476 489 503 450 461
  5 667 431 445 512 468 480
    643 437 451 516 470 483
    686 431 443 521 458 477
  6 588 440 451 477 436 447
    614 446 456 475 441 452
    549 452 464 489 435 445
BO 7 779 549 564 578 505 518
    763 560 574 602 559 572
    799 517 530 568 507 522
  8 625 472 486 530 455 466
    579 476 486 508 435 450
    610 449 463 534 469 473
  9 561 448 473 496 450 467
    667 504 468 501 455 475
    579 447 468 500 448 468
BW 10 417 439 439 474 424 429
    472 419 432 468 423 430
    595 403 426 466 427 430
  11 522 456 461 471 439 448
    666 436 451 469 435 451
    555 440 453 474 451 454
  12 799 447 462 468 413 433
    760 421 434 448 415 431
    669 415 432 466 404 434
Blank 13 687 422 452 474 426 433
    592 414 437 469 419 430
    631 424 436 469 420 432
  14 542 425 453 457 397 425
    570 425 453 449 391 414
    730 404 429 452 385 420
  15 600 452 468 447 422 432
    531 432 445 448 416 428
    650 418 436 437 414 425

.

  Static Kinetic
CP Peak Valley Average Peak Valley Average
  618 487 507 528 489 503
  655 464 479 516 455 473
  676 482 494 517 478 490
Product Ave 650 478 493 521 474 489
MCP 650 479 492 500 437 453
  665 433 446 516 465 480
  584 446 457 480 437 448
Product Ave 633 453 465 499 446 460
BO 780 542 556 583 524 537
  605 466 478 524 453 463
  602 466 470 499 451 470
Product Ave 662 491 501 535 476 490
BW 495 420 432 469 425 430
  581 444 455 471 442 451
  743 428 443 461 411 433
Product Ave 606 431 443 467 426 438
Blank 637 420 442 471 422 432
  614 418 445 453 391 420
  594 434 450 444 417 428
Product Ave 615 424 445 456 410 427

Coated CoF Readings

Final CoF Static Kinetic
Product Coupon # Peak Valley Average Peak Valley Average
CP 1 883 835 858 866 809 843
    1190 814 843 887 789 855
    1048 818 845 882 802 859
  2 1117 799 876 918 803 873
    1104 805 865 936 836 888
    1292 811 870 925 862 890
  3 1063 905 840 920 899 914
    939 884 909 928 893 914
    1114 870 906 928 907 919
MCP 4 824 720 742 720 670 704
    825 698 727 709 644 706
    802 657 712 739 682 713
  5 946 733 738 737 687 720
    983 731 726 729 717 722
    902 696 721 736 716 719
  6 887 761 769 744 626 729
    985 733 741 761 746 750
    854 736 741 740 734 738
BO 7 600 398 429 521 443 492
    529 430 473 516 440 484
    560 450 490 522 445 482
  8 482 437 448 472 450 456
    686 453 461 460 450 451
    633 450 458 459 444 431
  9 590 484 547 610 512 587
    688 417 541 578 490 554
    701 497 581 657 507 605
BW 10 628 452 494 550 514 526
    663 486 526 580 509 521
    805 472 513 541 483 495
  11 789 522 604 696 485 585
    689 519 587 693 492 577
    672 513 583 656 486 566
  12 532 437 440 445 403 422
    615 430 446 446 402 418
    467 416 436 520 383 429
Blank 13 586 489 506 533 474 497
    566 436 469 511 432 466
    616 460 482 505 443 469
  14 562 416 433 462 408 432
    654 404 433 461 409 430
    638 406 432 459 401 422
  15 663 436 455 461 450 457
    569 435 450 465 434 446
    574 435 447 462 436 448

.

  Static Kinetic 
  Peak Valley Average Peak Valley Average
CP 1040 822 849 878 800 852
  1171 805 870 926 834 884
  1039 886 885 925 900 916
Product Ave 1083 838 868 910 844 884
MCP 817 692 727 723 665 708
  944 720 728 734 707 720
  909 743 750 748 702 739
Product Ave 890 718 735 735 691 722
BO 563 426 464 520 443 486
  600 447 456 464 448 446
  660 466 556 615 503 582
Product Ave 608 446 492 533 465 505
BW 699 470 511 557 502 514
  717 518 591 682 488 576
  538 428 441 470 396 423
Product Ave 651 472 514 570 462 504
Blank 589 462 486 516 450 477
  618 409 433 461 406 428
  602 435 451 463 440 450
Product Ave 603 435 456 480 432 452

Cof F Difference

  Static Kinetic 
Product Peak Valley Average Peak Valley Average
CP 434 360 375 389 370 395
MCP 257 266 270 236 245 262
BO -55 -45 -9 -2 -11 15
BW 45 41 71 103 36 67
Blank -12 11 11 24 22 25

Success Rating:

A cleanliness study, addressing only various analytical techniques.

Conclusion:

The current practice coating matrix had the greatest increase in both static and kinetic coefficient of friction followed by the modified current practice. The increase represents more traction on the floor.

The Bona Oil mix was the only product that had lower coefficient of friction after application of the coating. This would result in a more slick surface.

Save Report as a PDF